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1. Introduction
Previous work1 has examined the application of existing uncertainty quantification
(UQ) methodologies to the Army-relevant problem of dynamic penetration of ar-
mor. In particular, a modified version of Dakota2 has been used to propagate input
uncertainties through a computational simulation of penetration into a semi-infinite
target of rolled homogeneous armor (RHA) in order to obtain estimates of the un-
certainties in the penetration depth. However, this work has uncovered two issues.
First, because of the lack of availability at the time of input uncertainties in the ma-
terial parameters of RHA, the previous work has resorted to crude approximations
of these uncertainties, which has led to a possibly unrealistic range of likely val-
ues for the penetration depth. Second, the material model used for RHA is itself an
approximation, introducing uncertainty that can only be approximately taken into
account by varying model parameters.3 Accordingly, a new study has been done
to address these issues. In addition to this, new software tools, OpenTURNS4 and
UQPy,5 have been applied alongside Dakota, in order to assess the capabilities of
these tools.

2. Description of Armor Penetration Problem
The armor penetration problem used in both this work and the previous work of
Ramsey1 is shown in Fig. 1. As before, the penetrator is a cylindrical 90%W–7%Fe–
3%Ni tungsten heavy alloy (WHA) 131W tapered rod, with a diameter of 0.91 cm,
a length of 13.1 cm, and an initial velocity of 1.28 km/s. The target is semi-infinite
RHA.

90W-7Ni-3Fe 131W projectile
(0.91 cm diam, 13.1 cm len,

1.28 km/s init vel)

Semi-infinite
RHA

Fig. 1 Diagram of example dynamic armor penetration problem used in both the current and
previous1 work. The penetrator is a cylindrical 90%W–7%Fe–3%Ni tungsten alloy 131W rod,
tapered at one end, with dimensions of 0.91 cm in diameter and 13.1 cm in length. The target
is RHA, whose depth is taken to be effectively semi-infinite.
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The Eulerian finite element code CTH6 simulates the penetration. Each finite ele-
ment is cubic with a side length of 0.05 cm. Each simulation has been run on 32
nodes of a computing cluster with 40 2.2-GHz Intel Xeon E5-2698v4 Broadwell
cores per node. The median simulation time is 1.23 h, and the maximum simulation
time is 3.78 h.

The Mie-Grüeneisen equation of state (EOS) is used for both penetrator and target.
In the formulation of this EOS used in CTH, the relationship between the shock
front velocity us and the velocity up of a point in the material is estimated to be

us = Cs + S1up +
S2
CS

u2
p (1)

where CS is the speed of sound in the material, and S1 and S2 are fitting parameters.
However, here S2 is taken to be zero, the specific heat capacity at constant volume
Cv is taken to be constant with respect to temperature, and the initial pressure is
taken to be negligible, so the EOS reduces to the following relationship between
pressure P, density ρ, and temperature T7:

P =
ρ0C2

S χ

(1 − χS1)2

(
1 −
Γ0
2
χ

)
+ Γ0ρ0Cv(T − T0), χ = 1 −

ρ0
ρ

(2)

Here, ρ0 and T0 are the initial density and temperature, and Γ0 is the Grüeneisen
parameter. The values of the parameters of this EOS for the penetrator and target
materials are taken from Hornbaker7 and shown in Table 1.

Table 1 Parameters left fixed in CTH simulations

Parameter WHA RHA

ρ0 (g/cm3) 19.235 7.850
T0 (K) 298 298
Cv (J/g · K) 0.138 0.446
Γ0 1.72 1.67
CS (m/s) 3980 4529
S1 1.24 1.49
S2 (m/s) 0 0
Tmelt (K) 1723 1783
ν 0.310 0.294

The plasticity model used in previous work for both penetrator and target is the
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Johnson-Cook model,8 which takes the von Mises flow stress to be

σJC(εp, Ûεp,T ; θJC) =
(
A + Bεn

p

) (
1 + C ln

Ûεp

Ûεp0

) [
1 −

(
T − Tref

Tmelt − Tref

)m]
(3)

where εp and Ûεp are the equivalent plastic strain and plastic strain rate, θJC ≡

(A, B, n,C,m), and A, B, n, C, and m are fitting parameters. The fixed parame-
ters in this model (i.e., not adjustable parameters fit to stress-strain data) are the
nominal melting temperature of the material, Tmelt (shown in Table 1), the reference
temperature, Tref = 298 K, and the reference plastic strain rate Ûεp0 = 1 s−1.

In order to examine the sensitivity of the simulation results on the plasticity model,
the current work uses an alternative plasticity model for the target material, the
Zerilli-Armstrong model for body-centered cubic (BCC) materials, in addition to
the Johnson-Cook model. This model takes the von Mises flow stress to be

σZA,BCC(εp, Ûεp,T ; θZA,BCC) = C0 + C1 exp
[(
−C3 + C4 ln

Ûεp

Ûεp0

)
T
]
+ C5ε

n
p (4)

where θZA,BCC ≡ (C0,C1,C3,C4,C5, n), and C0, C1, C3, C4, C5, and n are fitting pa-
rameters. (There is no parameter C2; such a parameter belongs to the face-centered
cubic version of the Zerilli-Armstrong model.9) In CTH, the Poisson’s ratio ν of
the material is considered part of the plasticity model. The values of this for the
penetrator and target materials are in Table 1.

3. Reassessment of Parameter Uncertainties
Unfortunately, stress-strain data at high strain rates and temperatures does not ap-
pear to be available for the WHA used for the penetrator in the previous work,
so one cannot refit a parameterized model to the data so as to obtain uncertainty
measures on the fitted parameters. However, previous work1 has indicated that the
penetrations are largely insensitive to the material parameters of the penetrator, so
the lower and upper bounds of those parameters from that previous work are reused
and shown in Table 2. The bounds of A and B are roughly estimated to be ±10% of
their nominal values shown in Table 2; the bounds of m are estimated to be ±15%
of its nominal value; and the bounds of the other two parameters are based on an
expert’s opinion.10

3
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Table 2 Lower and upper bounds of Johnson-Cook parameters for 90%W–7%Fe–3%Ni
WHA, along with their nominal values

Parameter Lower bound Upper bound Nominal value

A (MPa) 1356.30 1657.70 1507.0
B (MPa) 158.94 194.26 177.6
n 0.02 0.15 0.12
C 0.00 0.04 0.015
m 0.85 1.15 1.0

However, stress-strain data for RHA at several strain rates and temperatures has
been obtained from MIDAS11 and is shown in Fig. 2. Uncertainty measures thus
can be estimated from this data. Ramsey12 has discussed two approaches to ob-
taining uncertainty measures on material parameters for RHA. One of these, which
is recommended by Smith,13 is to use Bayesian methods such as Markov Chain
Monte Carlo, which can be used to both fit a parameterized model and estimate
a probability distribution for the values of the fitted parameters. Random samples
from this distribution can be fed into another computational model in order to do
uncertainty propagation analysis. Unfortunately, when a typical Bayesian analysis
is performed, where the data is presumed to be a sum of the model prediction and
random error, the joint probability density function (PDF) of the distribution of pa-
rameters becomes narrower and more sharply peaked as more experimental data is
obtained, regardless of how accurately the parameterized model predicts the exper-
imental data.14,15 A measure of the misfit of the model can be obtained through a
so-called nuisance parameter, but this cannot be propagated through another com-
putational model.

4
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Fig. 2 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with the plastic strain
rate denoted as Ûεp and the initial sample temperature Tinit

Another approach involves approximating an interval predictor model (IPM), which
is simply a function that returns an interval as its output rather than a single value.
Typically, an IPM is built from a function f (x; θ) where θ is a vector of parameters
within the setΘ. The lower and upper bounds returned by the IPM for a given input
x, then, are16

ymin(x;Θ) = min
θ∈Θ

f (x; θ) (5)

ymax(x;Θ) = max
θ∈Θ

f (x; θ) (6)

The set Θ can be any shape, but it is typically taken to be one that can be readily
parameterized, such as a hyperellipse17 or a hyperrectangle.16,18 In particular, the

5
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latter can be parameterized by the corners of the hyperrectangle that represent lower
and upper bounds for the elements of θ. The parameters of the set Θ are chosen so
that, given a data set {xi, yi}, i ∈ [1, N], they satisfy the following constrained
minimization problem16:

Θ = arg min
Θ∗

1
N

N∑
i=1
|ymax(xi;Θ∗) − ymin(xi;Θ∗)| (7a)

ymin(xi;Θ∗) ≤ yi ≤ ymax(xi;Θ∗), ∀i ∈ [1, N] (7b)

For a general f (x; θ), the constrained minimization in Eq. 7 may entail a possibly
unfeasible nested optimization problem. At a given iteration of the outer minimiza-
tion, determining if Eq. 7b holds requires evaluating ymin(xi;Θ∗) and ymax(xi;Θ∗),
and directly using Eqs. 5 and 6 to evaluate these quantities requires solving both a
minimization and a maximization problem for each value of xi. However, if Θ is a
hyperrectangle and f (x; θ) is a linear function of the elements of θ, then the solu-
tions to the minimization in Eq. 5 and the maximization in Eq. 6 are linear functions
of the lower and upper bounds of the elements of θ. No nested optimization is then
required, and Eq. 7 becomes a linear programming problem.18 To take advantage of
this result even if f (x; θ) is nonlinear in θ, one can take Θ to be the hyperrectangu-
lar interval [θ0 −∆θmin, θ0 +∆θmax] and approximate f (x; θ) as a first-order Taylor
expansion about θ0. Then,12

ymin(x;Θ) = f (x, θ0) −
1
2
(g(x) + |g(x)|)′∆θmin +

1
2
(g(x) − |g(x)|)′∆θmax (8)

ymax(x;Θ) = f (x, θ0) −
1
2
(g(x) − |g(x)|)′∆θmin +

1
2
(g(x) + |g(x)|)′∆θmax (9)

where g(x) is the gradient of f (x; θ) with respect to θ evaluated at θ0, |g(x)| is the
elementwise absolute value of g(x), and the superscripted prime (“′”) indicates the
transpose. Equation 7a becomes

∆θmin,∆θmax = arg min
∆θ∗min,∆θ

∗
max

1
N

[
N∑

i=1
|g(x)|

]′
(∆θ∗min + ∆θ

∗
max) (10)

Here, the elements of ∆θmin and ∆θmax are all positive.

The approximate IPM approach can be used to find bounds for the Johnson-Cook
and Zerilli-Armstrong (BCC) parameters (i.e., [θ0 − ∆θmin, θ0 + ∆θmax]), with f

6
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and θ taken to be either σJC and θJC or σZA,BCC and θZA,BCC, and x taken to be
(εp, Ûεp,T). Some care, though, needs to be taken when evaluating the gradients of
σJC or σZA,BCC at certain values. The analytical expressions for these gradients
contain the expressions εn

p ln εp and (T∗)n lnT∗, where T∗ ≡ (T − Tref)(Tmelt − Tref).
These expressions are undefined when εp = 0 or T = Tref , but have a finite limit of
zero as εp → 0 or T → Tref . Accordingly, when εp = 0 or T = Tref , the gradients
of θJC or σZA,BCC are taken to be their respective limiting values. In principle, θ0

can be set to any “best fit” estimate of θ, such as one from a least-squares fit. Since
Bayesian analyses of the Johnson-Cook and Zerilli-Armstrong models have been
done prior to analyses with the approximate IPM approach, best fit estimates have
been taken from these Bayesian analyses. For reasons discussed by Ramsey,12 the
best fit estimate for the Johnson-Cook model is taken to be the mean of the joint
PDF of θJC given a strong prior on A centered on an estimate of the yield stress of
RHA based on data from Benck,19 and the best fit estimate for the Zerilli-Armstrong
(BCC) model is taken to be the mean of the joint PDF of θZA,BCC when the model
is fit to the stress-strain data taken for initial sample temperatures of 298 K and
above, ignoring the stress-strain curves shown in Fig. 2 for an initial temperature of
77 K. Tables 3 and 4 show the lower and upper bounds based off of these best fit
estimates. For several parameters, namely A, B, C0, C1, C3, and C5, the lower and
upper bounds are the same.

Table 3 Lower and upper bounds of Johnson-Cook parameters for RHA

Parameter Lower bound Upper bound

A (MPa) 700.618008 700.618008
B (MPa) 865.515315 865.515315
n 0.072011 0.123377
C 0.004541 0.007103
m 0.874260 1.051230

Table 4 Lower and upper bounds of Zerilli-Armstrong (BCC) parameters for RHA

Parameter Lower bound Upper bound

C0 (MPa) 1.8678995 1.8678995
C1 (MPa) 1535.4145842 1535.4145842
C3 (K−1) 0.0013996 0.0013996
C4 (K−1) 0.0000057 0.0000489
C5 (MPa) 590.7882786 590.7882786
n 0.1783322 0.2162962

7
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4. Estimating Penetration Depth Uncertainties
Three software tools have been used to estimate the uncertainties in the penetration
depth: a modified version of Dakota 6.9,2 OpenTURNS 1.12,4 and UQPy 2.0.1.5

Dakota has been modified to account for a gap in its functionality. While it is able
to fit a metamodel to data (e.g., a Gaussian process) and save it to a file, it cannot
read that file and use it for subsequent analyses. The modified version of Dakota,
though, can do so. Dakota is an application that primarily works by reading in an
input file and applying routines internal to the application to perform sampling,
optimization, analysis, etc. On the other hand, OpenTURNS and UQPy are Python
modules whose functionality can be accessed through Python scripts, which can
make use of functionality (e.g., other Python modules or custom scripting) outside
of OpenTURNS or UQPy. These tools have been used for the following tasks:

• Creating and cross-validating a Gaussian process metamodel from the results
of armor penetration simulations, and then saving it to a file for later reuse.

• Interval analysis, that is, estimation of the lower and upper bounds on the
penetration depth given the lower and upper bounds on input parameters.

• Performing Latin hypercube sampling (LHS) and obtaining moments (such
as the mean, standard deviation, etc.) from the resulting samples.

4.1 Creating Metamodels from Armor Penetration Simulations
Section 2 describes the setup for the armor penetration simulations. As pointed out
in that section, the plasticity model for the target may be either the Johnson-Cook or
Zerilli-Armstrong (BCC) models. Accordingly, two sets of simulations have been
done, one for each model. Each set consists of 128 individual CTH simulations.
The simulations are identical except for their plasticity model parameters. Dakota’s
implementation of LHS is used to generate samples of these model parameters.
In the LHS, the lower and upper bounds of the penetrator parameters are those in
Table 2. When the Johnson-Cook model is used for the target, the lower bounds of
the parameters of the target are 90% of the lower bounds in Table 3, and the upper
bounds are 110% of the upper bounds shown in that table. Similarly, when the
Zerilli-Armstrong (BCC) model is used for the target, the lower and upper bounds
of the parameters of the target are 90% and 110%, respectively, of the lower and

8
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upper bounds in Table 4. After each CTH simulation has finished, the penetration
depth is extracted from the simulation output as described in Ramsey.1 The output
from each set of simulations, then, is 128 samples of input-output pairs, where the
input consists of material parameters for both penetrator and target, and the output
is the penetration depth.

For each set of CTH simulations, three Gaussian process metamodels are fit: one
from Dakota, one from OpenTURNS, and one from UQPy. By default, Dakota takes
the mean of the Gaussian process to be a quadratic polynomial of the inputs without
interaction terms,20 and it also requires the correlation function to be the Gaussian
or squared exponential,2

R(x, x∗) = exp

[
−

1
2

D∑
i

(
xi − x∗i

Li

)2
]

(11)

where x and x∗ are inputs, D is the length of x, and Li is a correlation length.
To be approximately consistent with these defaults, the same correlation function is
used with both OpenTURNS and UQPy, and quadratic polynomials are used for the
means (though neither OpenTURNS nor UQPy appears to be able to exclude inter-
action terms). The correlation lengths are determined automatically within Dakota,
OpenTURNS, and UQPy. For the most part, Dakota is designed to create a meta-
model (or “surrogate” as it is called in the Dakota example file and manuals), keep
it in memory, and then apply it to some other analysis, all within the same run of
the Dakota executable. Accordingly, just to create a metamodel in Dakota appar-
ently requires specifying a “dummy” analysis, such as a random sampling where
the number of samples is zero, in order to trigger building the metamodel. (An ex-
ample of this is in the file share/dakota/examples/eval_surrogate/
dakota_surrogate.in from the Dakota installation.) With OpenTURNS and
UQPy, the creation of the metamodel is more straightforward: a Python script reads
in data, feeds it to a Python object that fits a metamodel to the data (Krig in UQPy,
KrigingAlgorithm in OpenTURNS), and then saves the metamodel object to
a file. With OpenTURNS, though, there is an additional complication; normaliza-
tion of inputs is the responsibility of the Python script that creates the metamodel.21

By contrast, both UQPy and Dakota handle normalization transparently, internally
operating on a normalized copy of the data. When using OpenTURNS to fit a meta-
model to the simulation results, each input is normalized to the interval [0, 1]. Nei-
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ther OpenTURNS nor UQPy has an explicit capability to save metamodels to files.
Rather, for OpenTURNS, the metamodel object is saved using the pickle module
that is a standard part of Python. For UQPy, the functionality of the pickle mod-
ule is not sufficient to save a metamodel generated with it. Instead, the third-party
module dill, version 0.2.9,22 is used. The Python implementation used with both
OpenTURNS and UQPy is version 3.6.8 from Anaconda, Inc.23

After each metamodel has been constructed, it is tested by k-fold cross-validation.
The set of samples to which the metamodel has originally been fit is divided into k

subsets. For i ∈ [1, k], a new metamodel f (−i)(x) is fit to all subsets except for the
ith one. Then for each i, the following sums are calculated:

∆
i
sq,err =

∑
x∈Ii

[
f orig(x) − f −i(x)

]2
(12)

∆
i
abs,err =

∑
x∈Ii

�� f orig(x) − f −i(x)
�� (13)

Here, f orig(x) is the original metamodel, Ii is ith subset of input samples, and
x is one of the inputs from that subset. The root mean square (RMS) error,√∑k

i=1 ∆
i
sq,err/Ns, and mean absolute error,

∑k
i=1 ∆

i
abs,err/Ns, where Ns is the total

number of samples, can then be calculated. When k-fold cross-validation is done
for the special case of k = Ns, it is also known as leave-one-out (LOO) cross-
validation.2 With Dakota, doing cross-validation is a matter of adding a few key-
words to an input file. While neither OpenTURNS nor UQPy explicitly contain
functionality to do cross-validation,* one can implement cross-validation with a
custom Python script. When fitting the metamodel f (−i)(x) in OpenTURNS, the
maximum possible size of the squared correlation lengths is set to 105 by setting
the item in OpenTURNS’ ResourceMap with key GeneralLinearModel-

Algorithm-DefaultOptimizationScaleFactor to "100000". Both
5-fold and LOO cross-validation have been done, and the results are shown in Ta-
bles 5 and 6.

*The OpenTURNS classes KFold and CorrectedLeaveOneOut are, in the words of the
documentation of OpenTURNS, “not usable” because they only make sense within the implemen-
tation of a particular class within OpenTURNS.24,25

10
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Table 5 Cross-validation results for the metamodels where the Johnson-Cook model is the
plasticity model for the target

5-fold LOO

Software
RMS error

(cm)
Mean abs.
error (cm)

RMS error
(cm) (cm)

Mean abs.
error (cm)

Dakota 0.0233313 0.0169573 0.0225512 0.0143692
OpenTURNS 0.0210885 0.0154039 0.0186467 0.0133622
UQPy 0.0399600 0.0294449 0.0353926 0.0260735

Table 6 Cross-validation results for the metamodels where the Zerilli-Armstrong (BCC) model
is the plasticity model for the target

5-fold LOO

Software
RMS error

(cm)
Mean abs.
error (cm)

RMS error
(cm) (cm)

Mean abs.
error (cm)

Dakota 0.0164004 0.0116212 0.0189751 0.0104531
OpenTURNS 0.0258654 0.0168240 0.0210045 0.0147231
UQPy 0.0280902 0.0186461 0.0222536 0.0154479

The central processing unit (CPU) times needed to create and validate the meta-
models using the various software tools are shown in Tables 7 and 8. Here and in
the rest of this work, CPU times are from a MacBook Pro running macOS 10.13.6
on a quad-core 2.9-GHz Intel Core i7 processor and 16 GB of memory. In Dakota,
both creation and cross-validation were done together in a single run, so only the
total CPU time is available.

Table 7 Metamodel creation and cross-validation approximate CPU times in seconds for the
metamodels where the Johnson-Cook model is the plasticity model for the target

Software Creation 5-fold LOO Total

Dakota N/A N/A N/A 25.7
OpenTURNS 4.5 2.4 31.0 37.8
UQPy 4.1 15.0 535.3 555.4
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Table 8 Metamodel creation and cross-validation approximate CPU times in seconds for the
metamodels where the Zerilli-Armstrong (BCC) model is the plasticity model for the target

Software Creation 5-fold LOO Total

Dakota N/A N/A N/A 28.5
OpenTURNS 6.4 2.5 36.3 45.2
UQPy 4.0 15.8 491.8 511.5

4.2 Interval Analysis
Dakota has four built-in methods for interval analysis.20 One of them is a simplis-
tic, brute-force approach. LHS is used to generate a set of possible inputs, then each
possible input is fed into a computational model (which here is the Gaussian pro-
cess metamodel of armor penetration) to obtain its corresponding output (here, the
penetration depth). The lower and upper bounds of the output are then taken to be
the minimum and maximum of the generated outputs. As pointed out by Ramsey,1

this approach tends to overestimate the lower bound and underestimate the upper
bound, so it is not further pursued here.

The other three interval analysis methods in Dakota have the same overarching
structure. The lower bound of the output (which again is the penetration depth)
is found by doing a constrained minimization of the computational model (which
again is the Gaussian process metamodel of armor penetration) where the con-
straints are the lower and upper bounds of the model inputs. The upper bound is
found similarly, but with a constrained maximization instead of a minimization. In-
ternally, the constrained maximization in Dakota is simply a constrained minimiza-
tion of the negative of the computational model (i.e., max f (x) = −min[− f (x)]).
The difference between these other three methods is the choice of constrained min-
imization algorithm:

• Efficient global optimization. This algorithm26 is designed to minimize the
number of evaluations of the computational model (since in general it may be
expensive to evaluate) and involves iteratively fitting Gaussian process meta-
models to samples from the computational model. Since the computational
model used in the current work is already a Gaussian process metamodel,
this entails fitting a Gaussian process over another Gaussian process. Unfor-
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tunately, the implementation of EGO in Dakota performs poorly with the ar-
mor penetration metamodel, reaching the maximum number of computational
model evaluations or iterations before reaching the desired convergence tol-
erance. On the mailing list for Dakota users, it has been suggested that the
problem may be that the samples from the computational model generated
during minimization have all clustered together, causing numerical problems
when fitting a Gaussian process to those samples.27

• Evolutionary algorithm. This algorithm is designed to resemble the pro-
cess of Darwinial natural selection. The implementation in Dakota does
not respect any convergence tolerance set in the input file. Rather, as
indicated by the function check_tolerance() in the source code
file packages/external/acro/packages/colin/src/colin/

solver/ColinSolver.h, the algorithm terminates when a maximum
wall-clock time, number of iterations, or number of computational model
evaluations is reached, or when the output of the computational model is no
greater than a predefined target value. Accordingly, one needs to assess con-
vergence of this algorithm by monitoring if its output ceases to change as the
number of iterations increases.

• Surrogate-based optimization. This algorithm applies the aforementioned evo-
lutionary algorithm over a Gaussian process metamodel of the computational
model. Again, since the computational model used in this current work is al-
ready a Gaussian process metamodel, this entails fitting a Gaussian process
over another Gaussian process.

For the current work, the evolutionary algorithm appears to be the least problem-
atic among the algorithms that Dakota makes available for interval analysis. This
algorithm has been run for 129, 257, 513, 1025, 2049, 4093, and 8193 iterations,
though the results did not change after 513 iterations.

Neither OpenTURNS nor UQPy explicitly has features for interval analysis. How-
ever, what is done implictly within Dakota can be done explicitly with custom
Python scripting. That is, one can perform constrained minimization and maxi-
mization to obtain the lower and upper bounds on the penetration depth. As men-
tioned before, the Python scripts used with OpenTURNS or UQPy can readiliy
access functionality outside of either of those modules. Here, the functionality is
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a minimization routine from the optimize submodule of SciPy named shgo,
which implements simplicial homology global optimization.28 Again, maximiza-
tion is simply minimization of the negative of the armor penetration metamodel.

Interval analysis has been done for the following four conditions: (1) Johnson-Cook
model used for the target, lower and upper bounds for penetrator and target param-
eters set to those in Tables 2 and 3; (2) Johnson-Cook model used for the target,
penetrator parameters fixed at nominal values in Table 2, lower and upper bounds
for target parameters set to those in Table 3; (3) Zerilli-Armstrong (BCC) model
used for the target, lower and upper bounds for penetrator and target parameters
set to those in Tables 2 and 4; and (4) Zerilli-Armstrong (BCC) model used for the
target, penetrator parameters fixed at nominal values in Table 2, lower and upper
bounds for target parameters set to those in Table 4. Results are shown in Tables 9
and 10. CPU times to obtain the results are shown in Table 11.

Table 9 Lower and upper bounds for the penetration depth with the Johnson-Cook model
used for the target, both for the case where the penetrator parameters are allowed to vary
between lower and upper bounds, and for the case where the penetrator parameters are fixed
at nominal values

Penetrator parameters
varied

Penetrator parameters
fixed

Software Lower
bound (cm)

Upper
bound (cm)

Lower
bound (cm)

Upper
bound (cm)

Dakota 8.13 9.39 8.34 9.18
OpenTURNS 8.11 9.41 8.35 9.19
UQPy 8.13 9.44 8.35 9.17

Table 10 Lower and upper bounds for the penetration depth with the Zerilli-Armstrong (BCC)
model used for the target, both for the case where the penetrator parameters are allowed to
vary between lower and upper bounds, and for the case where the penetrator parameters are
fixed at nominal values

Penetrator parameters
varied

Penetrator parameters
fixed

Software
Lower

bound (cm)
Upper

bound (cm)
Lower

bound (cm)
Upper

bound (cm)

Dakota 7.79 9.28 8.03 9.03
OpenTURNS 7.79 9.30 8.03 9.03
UQPy 7.77 9.28 8.04 9.03
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Table 11 CPU times in seconds for interval analysis. For Dakota, “iters.” refers to the number
of iterations of the evolutionary algorithm

Penetrator parameters
varied

Penetrator parameters
fixed

Software

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Dakota,
2049 iters.

353.9 320.0 223.6 222.2

Dakota,
8193 iters.

1297.3 1186.7 933.7 953.4

OpenTURNS 11.8 2.9 1.2 1.2
UQPy 4.9 1.3 0.9 0.9

4.3 Latin Hypercube Sampling
LHS samples have been generated for the same four conditions as the interval anal-
ysis. In Dakota, an LHS sample can be extended, doubling the number of samples
while retaining the previous ones. This has been done for all LHS samples gener-
ated in Dakota that are larger than 128 samples. Neither OpenTURNS nor UQPy
has this extension capability, so for example, the LHS with 256 samples does not
share samples with the LHS with 128 samples. Moments of the LHS samples are
shown in Tables 12–23. For the sake of brevity, only moments for sample sizes
that are odd powers of 2 are shown. Dakota calculates skewness and kurtosis ac-
cording to the formulas for G1 and G2 from Joanes and Gill,29 and these formulas
have been used to calculate the skewness and kurtosis from the LHS samples from
OpenTURNS and UQPy as well.

Tables 24 and 25 show the CPU time and memory usage for parts of LHS. These
tables show the CPU time to generate all the LHS samples using Dakota, the CPU
time and memory to extend an LHS with 262144 to an LHS with 524288 sam-
ples using Dakota, the CPU time and memory to generate an LHS with 524288
samples using OpenTURNS, and the CPU time and memory to generate an LHS
with 524288 samples using UQPy in two different ways. In one of these ways,
the Ns = 524288 sample outputs are generated in a vectorized fashion, with the
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Gaussian process metamodel taking in a whole Ns ×D matrix of sample inputs and
returning a Ns × 1 column vector of sample outputs. The other way also creates a
Ns × 1 column vector of sample outputs, but the Ns sample inputs are fed into the
metamodel one at a time in the body of a Python loop. With OpenTURNS, sample
outputs are always generated in a vectorized fashion in this work.

Table 12 Moments from Latin hypercube samples from Dakota, with the Johnson-Cook model
used for the target and penetrator parameters allowed to vary between lower and upper
bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7429 0.1681 −0.1336 −0.4807
512 8.7428 0.1691 0.0717 −0.5380

2048 8.7430 0.1676 0.0325 −0.2865
8192 8.7430 0.1676 0.0087 −0.3814

32768 8.7430 0.1673 0.0074 −0.3966
131072 8.7430 0.1671 0.0236 −0.3794
524288 8.7430 0.1671 0.0221 −0.3772

Table 13 Moments from Latin hypercube samples from OpenTURNS, with the Johnson-Cook
model used for the target and penetrator parameters allowed to vary between lower and upper
bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7454 0.1569 −0.0581 0.0092
512 8.7454 0.1670 −0.0072 −0.3036

2048 8.7453 0.1668 0.0545 −0.3828
8192 8.7455 0.1689 0.0523 −0.3051

32768 8.7456 0.1689 0.0444 −0.3801
131072 8.7455 0.1691 0.0606 −0.3664
524288 8.7455 0.1689 0.0652 −0.3876
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Table 14 Moments from Latin hypercube samples from UQPy, with the Johnson-Cook model
used for the target and penetrator parameters allowed to vary between lower and upper
bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7373 0.1594 −0.1261 0.0898
512 8.7373 0.1761 0.1157 −0.4041

2048 8.7377 0.1688 0.0572 −0.3243
8192 8.7375 0.1697 0.0657 −0.3343

32768 8.7374 0.1708 0.0634 −0.3623
131072 8.7374 0.1699 0.0975 −0.3456
524288 8.7374 0.1704 0.0856 −0.3491

Table 15 Moments from Latin hypercube samples from Dakota, with the Johnson-Cook model
used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7417 0.1439 0.1141 −0.6550
512 8.7416 0.1444 0.0566 −0.4313

2048 8.7415 0.1446 0.0848 −0.4739
8192 8.7415 0.1444 0.0703 −0.4803

32768 8.7416 0.1447 0.0527 −0.4989
131072 8.7416 0.1449 0.0462 −0.5167
524288 8.7416 0.1450 0.0473 −0.5172

Table 16 Moments from Latin hypercube samples from OpenTURNS, with the Johnson-Cook
model used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7470 0.1625 0.2071 −0.7301
512 8.7464 0.1569 0.0474 −0.6562

2048 8.7465 0.1492 0.1021 −0.4865
8192 8.7464 0.1485 0.0757 −0.5267

32768 8.7465 0.1498 0.1009 −0.5466
131072 8.7464 0.1493 0.0757 −0.5638
524288 8.7465 0.1494 0.0835 −0.5610
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Table 17 Moments from Latin hypercube samples from UQPy, with the Johnson-Cook model
used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.7338 0.1424 −0.1026 −0.3977
512 8.7340 0.1469 0.0993 −0.5988

2048 8.7339 0.1439 0.1386 −0.5757
8192 8.7340 0.1459 0.1155 −0.5623

32768 8.7340 0.1460 0.0861 −0.5890
131072 8.7340 0.1453 0.0879 −0.5485
524288 8.7340 0.1453 0.0930 −0.5399

Table 18 Moments from Latin hypercube samples from Dakota, with the Zerilli-Armstrong
(BCC) model used for the target and penetrator parameters allowed to vary between lower
and upper bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5313 0.2629 0.1388 −0.9024
512 8.5310 0.2618 0.0687 −0.9112

2048 8.5309 0.2615 0.0454 −0.9434
8192 8.5309 0.2614 0.0330 −0.9320

32768 8.5309 0.2612 0.0214 −0.9185
131072 8.5308 0.2612 0.0186 −0.9258
524288 8.5308 0.2612 0.0190 −0.9238

Table 19 Moments from Latin hypercube samples from OpenTURNS, with the Zerilli-
Armstrong (BCC) model used for the target and penetrator parameters allowed to vary be-
tween lower and upper bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5317 0.2646 0.1062 −1.1761
512 8.5315 0.2599 −0.0446 −0.9843

2048 8.5310 0.2631 0.0079 −0.9269
8192 8.5312 0.2601 −0.0011 −0.9344

32768 8.5313 0.2603 0.0305 −0.8960
131072 8.5313 0.2610 0.0238 −0.9089
524288 8.5313 0.2607 0.0232 −0.9136
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Table 20 Moments from Latin hypercube samples from UQPy, with the Zerilli-Armstrong
(BCC) model used for the target and penetrator parameters allowed to vary between lower
and upper bounds

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5286 0.2669 0.0716 −0.8340
512 8.5315 0.2675 0.0003 −0.9030

2048 8.5309 0.2620 0.0252 −0.9238
8192 8.5304 0.2616 0.0063 −0.9080

32768 8.5306 0.2625 0.0136 −0.9107
131072 8.5307 0.2627 0.0130 −0.9236
524288 8.5306 0.2621 0.0140 −0.9206

Table 21 Moments from Latin hypercube samples from Dakota, with the Zerilli-Armstrong
(BCC) model used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5269 0.2503 0.0119 −1.2284
512 8.5272 0.2479 −0.0089 −1.1509

2048 8.5272 0.2474 −0.0052 −1.1225
8192 8.5272 0.2475 0.0024 −1.1222

32768 8.5272 0.2478 0.0053 −1.1277
131072 8.5272 0.2477 0.0006 −1.1274
524288 8.5272 0.2477 0.0015 −1.1278

Table 22 Moments from Latin hypercube samples from OpenTURNS, with the Zerilli-
Armstrong (BCC) model used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5266 0.2462 −0.0931 −1.1977
512 8.5268 0.2493 −0.0177 −1.1350

2048 8.5267 0.2478 0.0021 −1.1346
8192 8.5267 0.2477 0.0029 −1.1134

32768 8.5268 0.2483 0.0013 −1.1291
131072 8.5268 0.2483 −0.0021 −1.1263
524288 8.5268 0.2482 −0.0010 −1.1289
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Table 23 Moments from Latin hypercube samples from UQPy, with the Zerilli-Armstrong
(BCC) model used for the target and penetrator parameters fixed at nominal values

Number of
samples Mean (cm)

Standard
deviation

(cm)
Skewness Kurtosis

128 8.5306 0.2531 −0.0059 −1.2088
512 8.5300 0.2456 −0.0056 −1.1148

2048 8.5303 0.2484 −0.0168 −1.1578
8192 8.5303 0.2486 −0.0083 −1.1350

32768 8.5303 0.2481 −0.0049 −1.1321
131072 8.5303 0.2483 −0.0041 −1.1282
524288 8.5303 0.2487 −0.0052 −1.1297

Table 24 CPU times in seconds for LHS

Penetrator parameters
varied

Penetrator parameters
fixed

Software

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Dakota, all
samples 434.3 434.8 331.1 331.3

Dakota, last
LHS extension

222.7 226.2 170.4 168.1

OpenTURNS,
largest sample

117.6 117.5 106.9 113.5

UQPy, largest
sample,
vectorized
evaluation

145.9 160.9 143.6 162.6

UQPy, largest
sample, loop
evaluation

155.4 172.5 159.8 168.6
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Table 25 Memory usage in gigabytes for LHS

Penetrator parameters
varied

Penetrator parameters
fixed

Software

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Target
params.
Johnson-

Cook

Target
params.
Zerilli-

Armstrong

Dakota, last
LHS extension 2.43 2.41 2.28 2.27

OpenTURNS,
largest sample

0.48 0.47 0.34 0.33

UQPy, largest
sample,
vectorized
evaluation

10.46 11.19 10.57 11.19

UQPy, largest
sample, loop
evaluation

0.21 0.20 0.16 0.15
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5. Discussion and Conclusions
In the previous work by Ramsey,1 when examining the problem described in Sec-
tion 2 (where the element size in CTH is still 0.05 cm), the narrowest interval from
interval analysis—where only the four most sensitive parameters A, B, C, and n of
the target vary—predicts that the penetration depth could range from 5.9 to 10.1 cm,
while the moments generated from LHS samples indicate that the true value of the
penetration depth has at least an 88.8% probability of being within the interval
[5.9 cm, 9.8 cm], according to Chebyshev’s inequality.30 As can be seen in Ta-
bles 9 and 10, interval analysis predicts significantly narrow intervals, with widths
roughly around 1.5 cm rather than approximately 4 cm as in the previous work.
Similarly, depending on whether the Johnson-Cook model or the Zerilli-Armstrong
(BCC) model is used for the target, the moments generated from LHS samples in
Tables 12–14 or Tables 18–20, where the values of the penetrator are allowed to
vary, indicate that the true value of the penetration depth has at least an 88.8%
probability of being within the interval [8.2 cm, 9.3 cm] or [7.7 cm, 9.3 cm]. Fixing
the penetrator’s material parameters at nominal values only slightly narrows the in-
tervals, to [8.3 cm, 9.1 cm] when the Johnson-Cook model is used for the target, or
to [7.8 cm, 9.3 cm] when the Zerilli-Armstrong (BCC) model is used for the target.
This slight difference is due to the mean being largely unaffected by variations in
the penetrator parameters, while the standard deviation narrows slightly when the
penetrator parameters are fixed. This trend has also appeared in the previous work.
Changing the material model of the target has relatively small effects on the mean,
shifting it by about 2 mm, and shifts the standard deviation by about 1 mm. As
shown in Tables 9 and 10, the intervals predicted by the different material models
largely overlap. This suggests that predictions of the penetration depth are insensi-
tive to inaccuracies in these two models.

The different software tools yield largely the same results, so the question of which
one is the “best” among them largely comes down to computational costs, avail-
ability of features, ease of use, and so on. Dakota has two major detriments. First,
it has to be modified in order to take full advantage of the metamodels that it pro-
duces. Second, its choice of optimization algorithms for interval analysis is limited.
Strictly speaking, one could say that since neither OpenTURNS nor UQPy im-
plement interval analysis themselves, they offer no choice of algorithms for such
analysis, but because they can be used within a larger Python ecosystem, they can
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easily be used with any third-party algorithm with a Python interface. Furthermore,
as can be seen in Table 11, interval analysis with them is far less costly than it is
with Dakota in practice. Dakota has a few advantages, though. One need not ex-
plicitly choose a mean or correlation function; sensible defaults can be used. It is
trivial to cross-validate a metamodel created by Dakota. It also has the capability to
extend a previously available LHS sample, something lacking in both OpenTURNS
and UQPy. That said, as indicated by Tables 24 and 25, the cost of generating even
a large LHS need not be that high to begin with, though, as seen in Table 25, one
should avoid inputting too many samples at once into a metamodel generated with
UQPy. Overall, if one needs to use a purely off-the-shelf solution that requires no
modifications, OpenTURNS appears to be the best of the software tools discussed
in this work, having CPU times and memory usage that are at least competitive with
Dakota.

The current work improves over the previous work applying UQ software tools to
an armor penetration problem. In particular, two additional practices are introduced
in this work. First, where feasible, find uncertainty measures for model parameters
that have been obtained from the original experimental data, rather than make crude
judgments based on rules of thumb such as taking the upper and lower bounds to be
±10% of available point estimates. Provided that the models being used are reason-
able approximations to begin with, this should lead to tighter uncertainty measures
(e.g., a narrower interval, smaller standard deviation) for the desired quantity of in-
terest. Second, where feasible, apply multiple models. If different empirical models
approximately agree even if they share little in common, this is a sign that they
produce reasonable results over the range of input values that they encounter dur-
ing an analysis, thus bolstering confidence in one’s assessments of uncertainty of
quantities of interest.
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List of Symbols, Abbreviations, and Acronyms

θJC fitting parameters of Johnson-Cook model

θZA,BCC fitting parameters of Zerilli-Armstrong (BCC) model

Ûεp plastic strain rate

Ûεp0 reference plastic strain rate, 1/s

εp plastic strain

Γ0 Grüeneisen parameter

ν Poisson’s ratio

ρ density

ρ0 initial density

σJC flow stress according to Johnson-Cook model

σZA,BCC flow stress according to Zerilli-Armstrong (BCC) model

A fitting parameter of Johnson-Cook model that represents yield
strength at reference strain rate and room temperature

B fitting parameter of Johnson-Cook model that represents strain
hardening prefactor at reference strain rate and room temperature

C fitting parameter of Johnson-Cook model that represents strain
hardening effects due to strain rate

Ci fitting parameter of Zerilli-Armstrong (BCC) model, where i ∈

{0, 1, 3, 4, 5}

CS speed of sound in a material, and denominator of quadratic coef-
ficient of us-up curve

Cv specific heat capacity at constant volume

D length of the vector input to a Gaussian process metamodel
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m fitting parameter of Johnson-Cook model that represents thermal
softening exponent

n fitting parameter of Johnson-Cook and Zerilli-Armstrong models
that represents strain hardening exponent

Ns number of samples

P pressure

S1 linear coefficient of us-up curve

S2 numerator of quadratic coefficient of us-up curve

T temperature

T0 initial temperature

Tmelt melting temperature

Tref reference temperature, typically room temperature

up velocity of point in material

us shock front velocity

BCC body-centered cubic

CPU central processing unit

EOS equation of state

IPM interval predictor model

LHS Latin hypercube sampling

LOO leave-one-out

OpenTURNS Open Treatment of Uncertainties, Risks, ’N Statistics

PDF probability density function

RHA rolled homogeneous armor

RMS root mean square
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UQ uncertainty quantification

UQPy Uncertainty Quantification with Python

WHA tungsten heavy alloy
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